Team: 209 – Micromouse Expo Presentation

Drivetrain Team

Daxton Barzee (EE) & Carolina Gonzalez (ME) <u>Mapping Team</u>

Alannys Argandona (EE), Jazmyn Ramirez (EE)

Faculty Advisor: Dr. Curtis Wang

December 6th, 2024

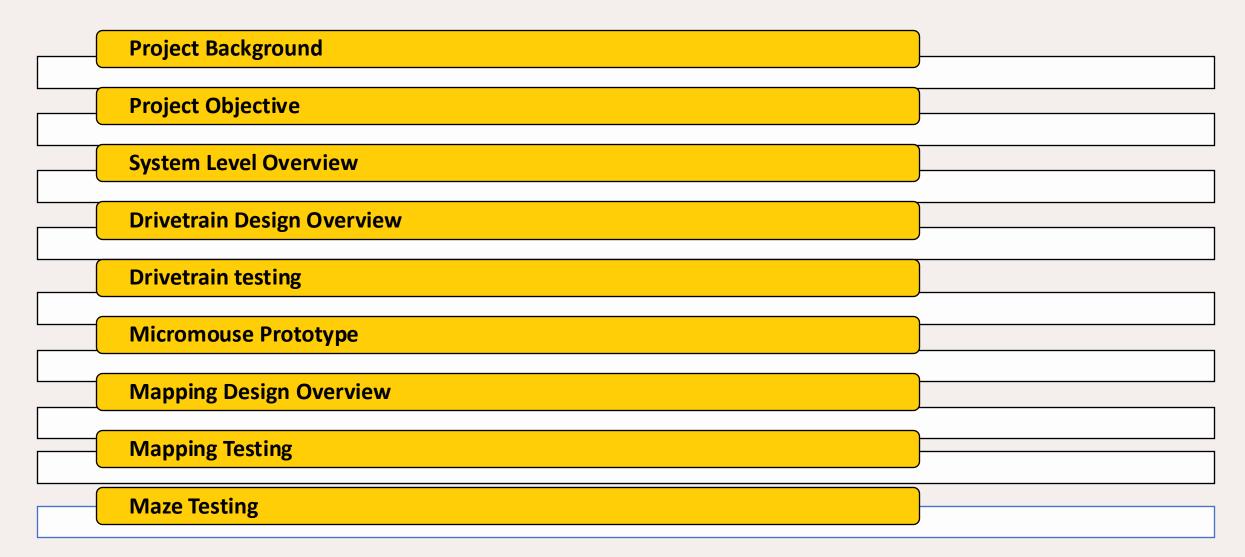
Team Members

Drivetrain Team

Mapping Team

Daxton Barzee

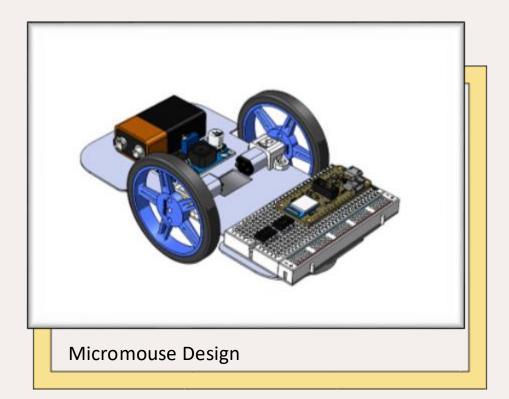
Carolina Gonzalez



Alannys Argandona

Jazmyn Ramirez

Agenda Overview



Project Background

The IEEE *Micromouse* Competition consists of an annual event challenge in not only designing but also in building a small autonomous robotic mouse that must be capable in solving a maze without any external inputs.

Competition allows for engineering student to test their knowledge in different aspects such as robotics, control systems, machine learning as well more physical components like dynamics.

Project Objective

Objective

To design and construct an autonomous mouse for the annual IEEE Competition

Team Composition

The Mapping Sub-team

>The Drivetrain Sub-team

Project Management

Drivetrain Team

Sub Team Members

Carolina Gonzalez

Daxton Barzee

Drivetrain Responsibilities

- Design and produce a device that facilitates movement and measurements
- Shall compare viable options for wheels, drivetrain, chassis, distance measurement sensors and path tracing methods for conceptual design.

Mapping Team Responsibilities

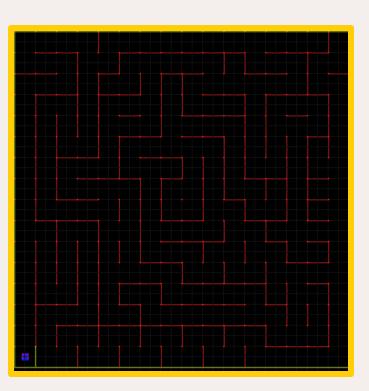
- Providing evidence of sensors and data processing method
- Shall create the electrical and computational designs such as sensors and electronic circuits.

Work Breakdown Structure - Drivetrain

Task Team	Task Number	Task	Task Description	Start Date	Finish Date
Phase 1: Input and Output Testing	1			9/2/2024	9/20/2024
Drivetrain Team	1.2	Build all three different mechanical prototypes	In composing all of the mechanical properties such as the chassi and the wheels with the motors.	9/2/2024	9/6/2024
Drivetrain Team	1.3	Test/compare all three mechanical prototypes	Test all three variations and start building on the electrical components on selected chassi	9/8/2024	9/14/2024
Drivetrain Team	1.3b	Test electrical components on chassi	Test all of the bigger electrical components such as the microcontroller, distance sensors, and motors that will be later become perminate to the chassi	9/14/2024	9/20/2024
Drivetrain Team	1.4	Physical Simulation	Having a smaller mock maze completed to test all of the components working together.	9/14/2024	9/20/2024
MILESTONE 1	1.4b	Direction to Motor Output	Complete H-Bridge configuration and software motor control. Test different wheels for accuracy/efficiency.	9/15/2024	9/20/2024
Phase 2: Bridging Mechanical and Electrical Components	2			9/15/2024	10/21/2024
Mapping / Drivetrain Team	2.1	Prototype the Onboard Electrical and Computational Design	Compare the different sensors, circuits, and sensor data processing methods	9/26/2024	9/30/2024
Mapping / DriveTrain Team	2.2	Testing & troubleshooting physical and software architecture	Test for results on hardware and softwareDesigns and work on any issues	9/30/2024	10/4/2024
MILESTONE 2	2.3	Prototype with completed electrical components	Prototype with sensors, motors and working code to move micromouse	10/1/2024	10/11/2024
Drivetrain Team	2.4	Additional trial and errors testing	Create calibration curves and measure turn radius & other drivetrain parameters to solidify testing.	10/11/2024	10/21/2024
MILESTONE 3	3.1	Working Model with Software	Micromouse structure design completed with necessary modifications and working code to run a maze	10/21/2024	11/1/2024
Phase 3: Project Completion	3			10/21/2024	11/22/204
Drivetrain Team	3.1	Present Designs	Begin poster designs for EXPO	11/1/2024	11/8/2024
Mapping / Drivetrain Team	3.2	Optimization	Implement any final improvements in physical / software architecture	11/8/2024	11/15/2024
Mapping / Drivetrain Team	3.3	Feedback	Gain Feedback on Designs and finalize project	11/15/2024	11/22/2024

Work Breakdown Structure - Mapping

Task Team	Task Number	Task	Task Description	Start Date	Finish Date	Deliverable Type
	1	Phase 1: Testing				
Mapping Team	1.2	Create a electrical and computational design	This design will help us figure out how the micromouse will be able to know where it is in terms of the maze and how to move forward	9/2/2024	9/6/2024	Slides
Mapping Team	1.3	Test/compare electronic circuits	Test sensor circuits that would help the mapping of the micromouse	9/8/2024	9/14/2024	Slides
Mapping Team	1.3b	Test sensor data processing methods	Test sensor data processing methods	9/14/2024	9/20/2024	Slides
Mapping team	1.4	Physical Simulation	Create a physical simulation using a lego box, sensors and microcontroller.	9/14/2024	9/20/2024	Slides
MILESTONE 1	1.4b	Sensor Selection	Narrowing down the best sensors for our micromouse to move forward to design	9/14/2024	9/20/2024	Slides
	2	Phase 2: Prototype				
Mapping Team	2.1	Prototype the Electrical and Computational Design	Use the lego box to compare the different sensors, circuits, and sensor data processing methods	9/26/2024	9/30/2024	Slides/Prototype
Mapping Team/DriveTrain Team	2.2	Feedback	Gain Feedback on Designs and work on any issues	9/30/2024	10/4/2024	Slides
MILESTONE 2	2.3	Calculating sensor calibration and calibration curves	Calculating sensor calibration and calibration curves	10/1/2024	10/11/2024	Slides
Mapping Team	2.4	Additional trial and errors testing	Testing all electrical and mechanical components together to find best results	10/11/2024	10/21/2024	Slides
	3	Phase 5. Poster				
MILESTONE 3	3.1	Working structure design and code	Micromouse structure design completed with necessary modifications and working code to run a maze	10/21/2024	11/1/2024	Slides
Mapping Team	3.1	Present Designs	Begin poster designs for EXPO	11/1/2024	11/8/2024	Slides/Prototype
Mapping Team/DriveTrain Team	3.2	Identify Best Designs and Prepare	See which design works best with one another to be able to then continue preparing for EXPO	11/8/2024	11/15/2024	Slides/Prototype
Mapping Team/DriveTrain Team	3.3	Feedback	Gain Feedback on Designs and finalize project	11/15/2024	11/22/2024	Slides


Bill of Materials – Drivetrain Team

	Components List				
Iteam Number	Item Name	Price Per Unit	Quantity	Function	Total Price
1	30:1 Micro Metal Gearmotor MP 6V	\$18.35	2	Allow for movement to occ ur within the Micromouse	\$91.75
2	Pololu Wheel 32x7mm Pair - Black	\$3.95	2	One of the wheel types that undergo testing to determine wether not it is the most efficient set for the Micromouse	\$7.90
3	Pololu Wheel 40x7mm Pair - Black	\$4.95	2	One of the wheel types that undergo testing to determine wether not it is the most efficient set for the Micromouse	\$9.90
4	Pololu Wheel 60x8mm Pair - Blue	\$5.75	2	One of the wheel types that undergo testing to determine wether not it is the most efficient set for the Micromouse	\$11.50
5	Pololu 400- Point Breadboard with Mounting Holes	\$2.95	1	Allows for prototyping and the testing of the electronic circuits without soldering. Eventually, it allows for the solidification of a schematic that can be transferred to. PCB	\$2.95
6	Adafruit Feather nRF52840 Express	\$24.95	1	Also known as the "brain" of the Micromouse, it allows to received input from various sensors. The use of an algorithim allows for decision making from the pre-programed logic from real- time input.	\$24.95
7	L9110H H-Bridge Motor Driver for DC Motor-8Pin- 2.5V-1.2V 800mA	\$1.50	2	Allows for direction control as the polarity of the voltage applied to the motor determines whether it will rotate clockwise or counterclockwise.	\$24.95
8	Pololu Micro Metal Gearmotor Bracket Extended Pair	\$4.95	1	Allows for mounting and support for a gearbox within the motor. It also offeres alignment and stability.	\$24.95
9	26 Pcs Self Adhesive Wheel Casters	\$8.75	1	Creates stability within the Micromouse's body as it maintains balance as it moves in multiple directions. It has a small contact surface, reducing friction.	\$8.75
10	5 Pcs LM2596 DC to DC Buck Converter	\$7.99	1	Facilitates the voltage step-down of a 9V battery to a contant 5V voltage required by the motors. This prevents damge from excessive voltage.	\$7.99
11	Magnetic Encoder Pair Kit with Side Connector for Micro Metal Gearmotor, 12CPR, 2.7-18V	\$7.89	1	Measures the rotational speed of each wheel and determins the exact location of the Micromouse. It counts the traveled distance based on motor revolutions.	\$7.89
12	Lithium Ion Polymer battery - 3.7V 350mAh	\$6.95	1	Supplies 3.7 volts to the microcontroller enabaling a direct and stable voltage input for the low voltage interfacing components.	\$6.95
13	10 Pcs5x7" - 0.043" Acrylic Plexiglass	\$6.99	1	Due to the custome size and arrangement that the Micromouse has, acrylic was used due to its durability. Since its acrylic, it can be laser cutted to any given size.	\$6.99
14	Jumper Wire Kit	\$13.99	1	To allow protoyping, jumper wires were used to help finalzie the pin outs and circuitry to each component found within the Micromouse.	\$13.99
15	6-Pin Single-Ended Female JSTSH-Style Cable 12cm	\$1.19	2	Connectors to the encoders to allow be read from the motors to the microcontroller	\$2.38
16	PCBBoard	\$43.00	1	To have a consolidated electrical design	\$43.00
Total					\$296.79

Bill of Materials – Mapping Team

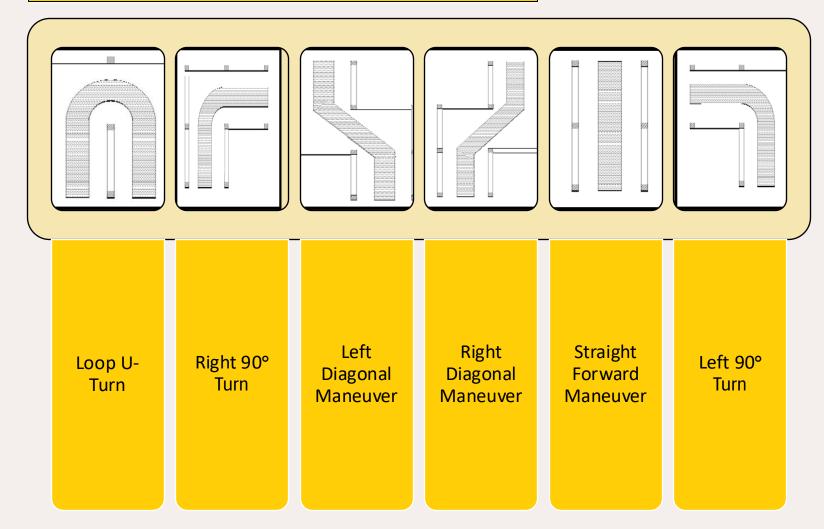
ltem Number	Item Name	Price Per Unit	Quantit Y	Price	Place of Purchase
1	HC-SR04 (2 PACK)	\$6.99	1	\$6.99	Amazon
2	MB1030	\$29.95	1	\$29.95	DigiKey
3	SG90 Micro Servo Motor (2 PACK)	\$6.99	1	\$6.99	Amazon
4	Adafruit VL6180X Time of Flight Distance Ranging Sensor	\$13.95	3	\$41.85	Adafruit
5	Adafruit VL53LOX Time of Flight Distance Sensor	\$16.95	1	\$6.95	RS American
6	Square Wood Sheets	\$12.19	1	\$12.19	Amazon
7	GP2Y0A21	\$12.99	2	\$25.98	Amazon
Total				\$140.90	

Research Requirements

Automation

• The *Micromouse* robot must be able to navigate and solve the maze autonomously in the shortest amount of time

Hardware

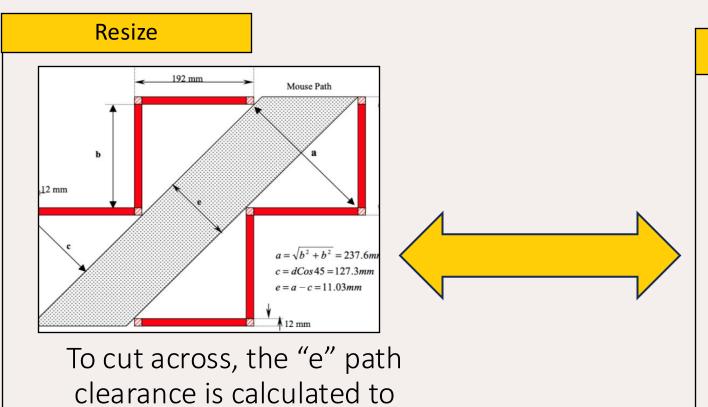

• The *Micromouse* robot must limited to onboard hardware and processing and may not receive external inputs

Maze Restriction

• The *Micromouse* Maze is at a fixed size but the configuration for the correct path isn't revealed until the day of

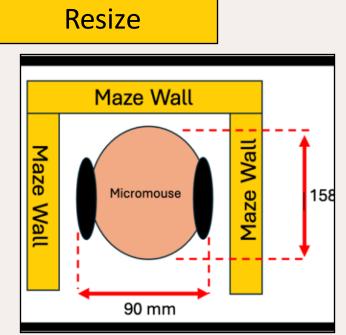
Preliminary Research

Micromouse Size Restrictions

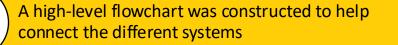


Based on the given parameters from the IEEE Rules, the Unit Cell in Micromouse is illustrated

— 186 mm

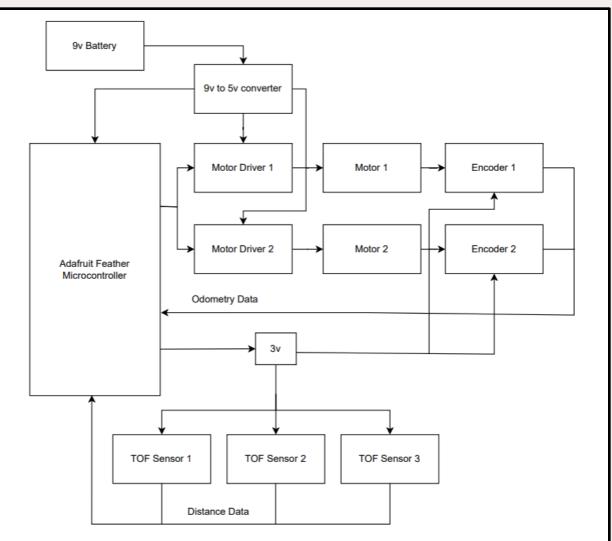

Preliminary Research

Micromouse Size Restrictions

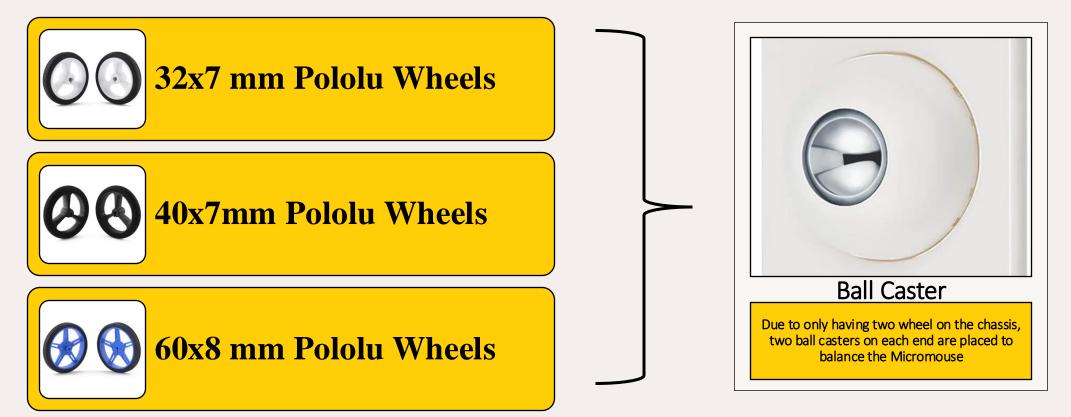

create the max length and

width of the Micromouse

- Width: 90 mm
- Length: 158 mm

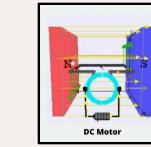

System Level Overview

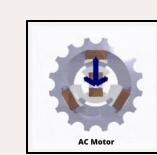
A PCB will be used as a main circuity hub


Readings from all sensors will go to and be interpreted in the microcontroller

Consequential motor speed, direction, and distance will be sent to the motor driver then to all motors.

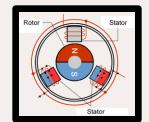
Mechanical Design Overview


 All 3 Wheels were tested and 60x8 mm Pololu Wheels were chosen as the most efficient



Mechanical Design Components

LEGEND


- 1 = Poor
- 2 = Fair
- 3 = Good
- 4 = Very Good
- 5 = Excellent

Criteria	DC Motors	AC Motors
Low Cost	2	3
Efficiency	4	2
Speed Control	4	3
Size and Weight	4	3
Power Output	5	4
Total	19	15

	Criteria	Brushless DC	Brushed DC	Servo DC
1	Cost	1	3	2
	Efficiency	3	3	2
	Speed Control	4	3	5
	Total	8	9	9

10 × 12 × 26 mm <mark>1</mark>
9.5 g
3 mm ²

Although the best choice of a motor is a Brush DC Motor, a greater torque can be added within the motor through a Gearbox Motor.

Mechanical Design Components

Motors- Drivetrain (Motor Case Study) – 30:1 Micro Metal Gearmotor MP 6V

Performance at maximu	um efficiency
Max Efficiency @ 6V:	41%
Speed at max efficiency: 830 rmp	
Torque at max efficiency	0.10 kg·cm
Current at max efficiency	0.36 A
Output power at max efficiency	0.89 W

Voltage	No-load Performance	Stall Extrapolation
6 V	1000 RMP, 100 mA	0.57 kg·cm (7.9 oz∙in), 1.6 A

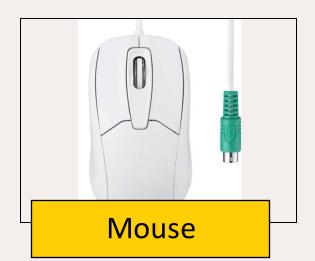
General Spo	ecifications
Gear Ratio	29:86:1
No-load Speed @ 6V:	1000 rmp^3
No-load current @ 6V:	0.10A^4
Stall current @ 6V:	1.6 A
Stall Torque @ 6V:	0.57 kg·cm
Max output power @ 6V:	1.5 W
Extended motor shaft?	Ν
Motor Type:	1.6 A stall @ 6V (HP 6V)

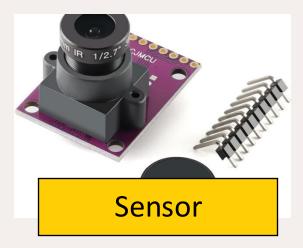
The Specs that came with the Pololu Motor

Design Overview – Electrical Components

		dometry – D	
	JUUUII		Trade Study)
Crit	teria	Hall Effect Sensor	Optical Sensor
Low	Cost	5	2
Acci	uracy	3	5
Mou	Inting	5	3
	e of surement	4	3
Dura	bility	5	3
Тс	otal	17	22

The Hall Effect sensor was chosen after testing as the ideal odometry sensor

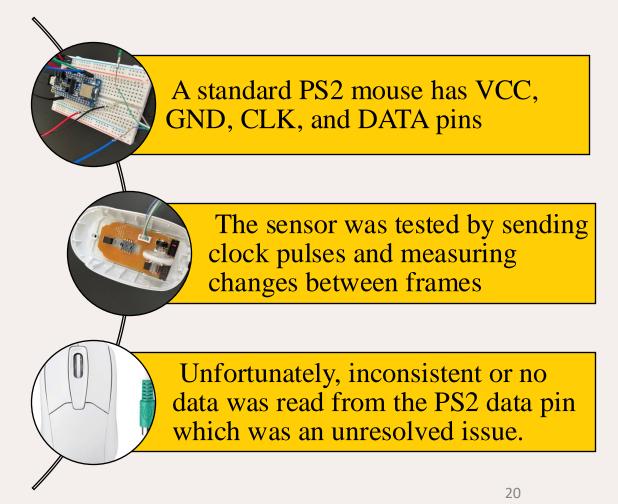

Design Overview – Optical Sensor


Two types of optical sensors were ordered and compared

The optical sensor was tested first because it could give full range movement sensing

One sensor was a standalone optical sensor while the other was from a PS2 computer mouse

Sensors would be tested on different floor types to ensure versatility


Design Components – Optical Testing

Odometry - Optical Test

• A PS2 optical mouse sensor was found to be more versatile
• This mouse uses a PAW 3515DB Series Optical Mouse Chip
Accurate measurement over a wide range of surfaces
• Up to 30 inches/sec measurement
• 3300 frames/sec with 1000 DPI
• Easy to calculate real distance travelled read from mouse data pin:
○ Distance per count (inches) = 1 / DPI
\circ Total distance (mm) = ∑(Counts per frame) X 1 / DPI X 25.4
• Ex: If over 1 second the mouse reports 500 counts

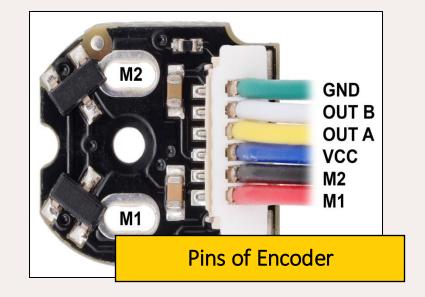
• Total distance (mm)=0.5×25.4=12.7 mm

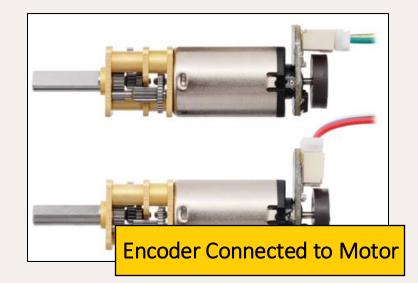
Odometry – Optical Test Issues

Design Components – Hall Effect

Odometry – Encoder Implementation

An encoder using the hall-effect principle is how the mouse tracks/controls distance travelled


"Ticks" are the base unit of encoder rotation and can be directly related to distance travelled using the circumference of the wheel.



With a full rotation value of 180 ticks and a wheel diameter of 60.0mm gives 188.5mm travelled per rotation.

This value can be used to tell the motors how far to go/turn as well as store distanced travelled for mapping purposes

Design Components – Odometry Software

// Calculate distance based on encoder ticks

float calculateDistance(int ticks) {

float revolutions = (float)abs(ticks) / ticksPerRevolution;

return revolutions * pi * wheelDiameter; // Distance in mm

Odometry Code

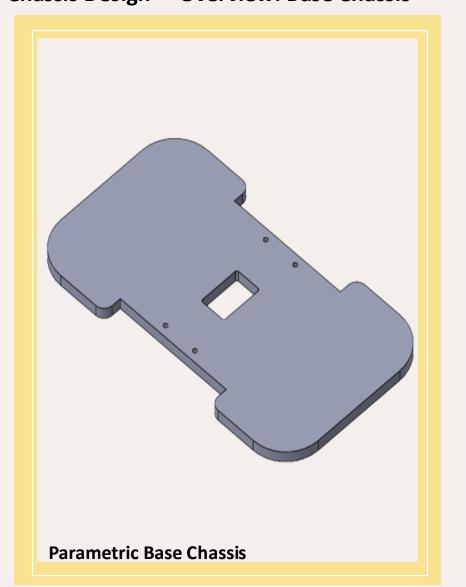
Overall goal is to provide accurate move forward, turn right, and turn left functions for mapping team to use to navigate the maze

Synching each motor to stop turning at the same time proved to be difficult resulting in a slight left turning forward motion

This problem was solved temporarily by frontloading software computing before motor control code

As the overall software to control the robot gets more complex, it is essential to correct robot position using distance sensors.

Chassis Design – Battery Implementation: Case Study


Attribute	9V Battery	4 AAA Batteries	LiPo Battery	
Voltage	4 (Compact, fixed 9V)	3 (6V total, modular)	5 (Versatile, scalable packs)	
Energy Density	3 (Moderate)	2 (Lower density)	5 (High energy density)	
Cost	4 (Affordable)	4 (Affordable per unit)	3 (Higher cost)	
Weight	4 (Lightweight)	3 (Comparable weight to 9V)	5 (Lightweight relative to power)	
Lifespan (Rechargeable)	3 (Moderate cycles)	3 (Moderate cycles)	4 (Longer lifespan with care)	
Applications	3 (Specific uses)	4 (Wide variety of uses)	5 (High versatility)	
Advantages	Advantages 3 (Compact and easy to use) 4		5 (Powerful and lightweight)	
Disadvantages	Disadvantages 3 (Lower capacity limits)		2 (Requires careful handling)	
Total	Total 27		34	

>>>

Based on the Case Study, the best option to use is the LiPo Battery. Although it is implemented within the prototype, it is only 3.7 V to avoid a voltage overload within the rest of the components

It is also important to note that the motor are powered at 5V through the 9V battery directly in the prototype with the use of a buck converter

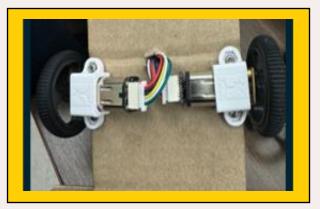
Design Components – Parametric Chassis Chassis Design – Overview: Base Chassis

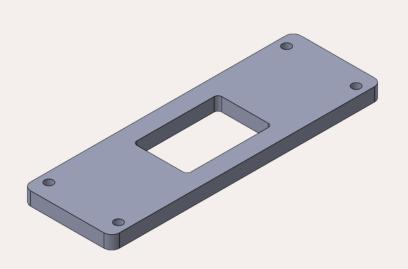
Chassis allows for everything to be mounted on together and move

Due to not knowing which wheel type would work best up at this point, the best option is to make a **parametric model**

A parametric model would allow is to make all the parts interchangeable

In making the Parametric Model, key size restrictions are pointed out to ensure the interchangeability


Chassis Design – Key Size Restrictions: Motor Spacer

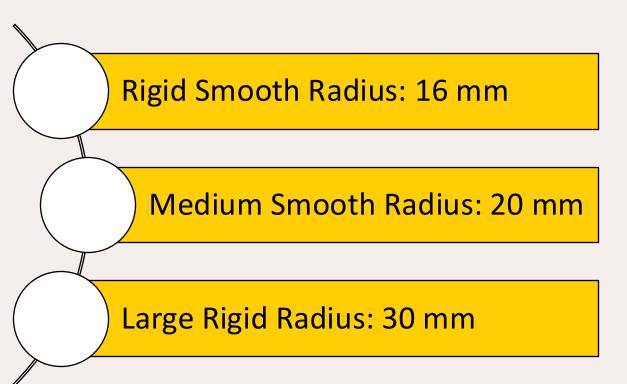

Size Restrictions

- Maximum Width: 90 mm
- Maximum Length: 158 mm
- Minimum Width: 66 mm
- Minimum Length: 158 mm
- Thickness: 3.05

Maze Restrictions

Components [Motor and Encoder] Restrictions

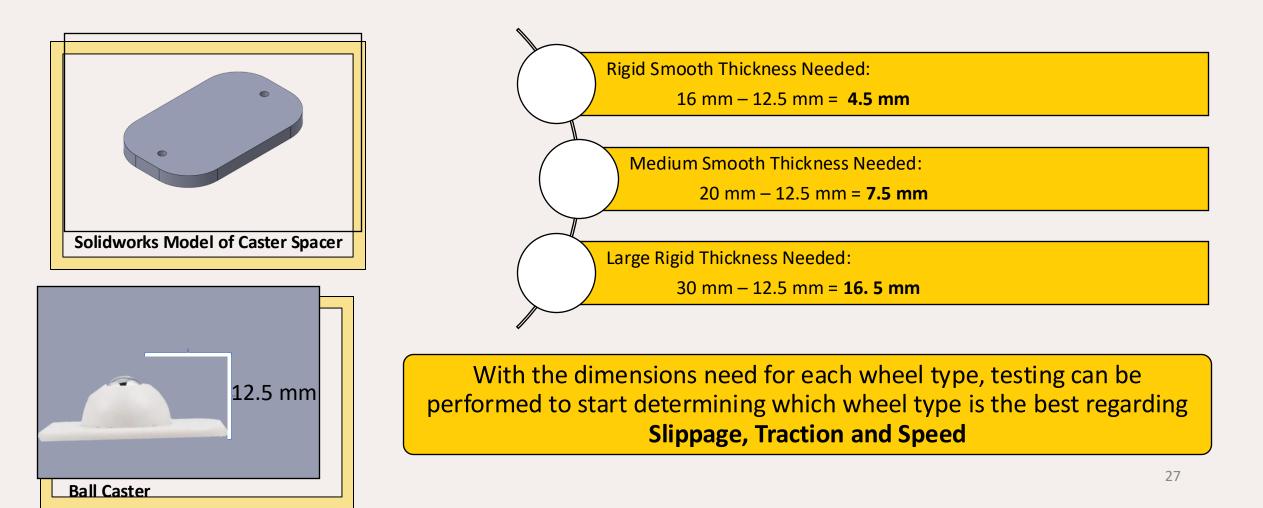
Motor Spacer


The Thickness of the acrylic for the chassis is also taken into account as the purpose of this is to create enough offset between the motor's height and the wheel's radius.

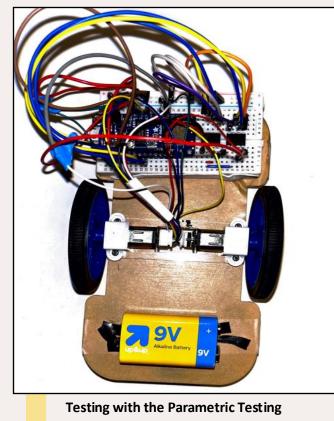
The Motor space is placed in the middle of the Base Chassis to allow for encoder wiring to pass through to the microcontroller.

This Motor Spacer is only applicable for the Large Ribbed Wheels

Chassis Design – Key Size Restrictions: Wheel Dimensions


Wheel Dimensions							
Model	Model Parameter Value						
	Outer Diameter	32	mm				
	Outer Radius	16	mm				
32 x 7 Pololu Wheels	Inner Diameter	23.15	mm				
[Small Rigid]	Inner Radius	23.15	mm				
	Thickness	7	mm				
	Diamter of adapter	3	mm				
	Outer Diameter	40	mm				
	Outer Radius	20	mm				
40 x 7 Pololu Wheel	Inner Diameter	30	mm				
[Medium Smooth]	Inner Radius	15	mm				
	Thickness	7	mm				
	Diameter of adapter	3	mm				
	Outer Diameter	60	mm				
	Outer Radius	30	mm				
60 x 8 mm Pololu Wheel	Inner Diameter	47.25	mm				
[Large Rigid]	Inner Radius	23.625	mm				
	Thickness	8	mm				
	Diamter of adapter	3	mm				

Based on these measurements, the needed height for each caster is shown on the right


Chassis Design – Key Size Restrictions: Caster Spacer Thickness Dimension per Wheel Type

Radius of Wheel Type – Ball Caster Thickness = Thickness of 3D Printed Caster Spacer

Advantages of Parametric a Chassis

- The advantages of having a parametric model is that it ensures different types of testing regarding the efficiency at a better control, leaving for less room for error.
 - Therefore, continuous testing can occur with the use of this model

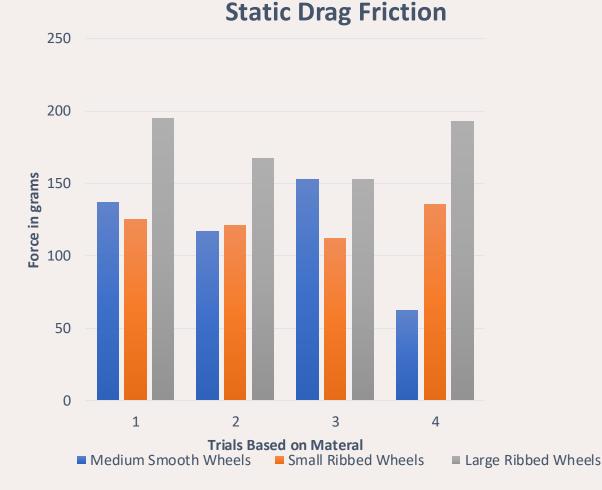
"One Size Fits All"
Accommodates mounting points, ensuring stability
Easily Modifiable

Wheel Selection – Surface Area Testing: Contact Area Greater the diameter of the wheel is, the greater the surface area there is within the Micromouse In having a greater diameter, there is a greater possibility in loosing traction as speed increases due to the wheel having a high moment of inertia In analyzing both tables, it seems as if Large Ribbed Wheels and Medium Sooth Wheels as they offer an in between value where the surface area is great enough to not loose friction,

but the diameter is not large where inertia will make a drastic effect in its performance

	Contact Area Comparison									
	Units		mm				in	mm		
	Wheel Type	Diameter	Thickness	Length per Rotation (Wheel Circumfernce)	Image Format	ImageJ Processed Image	Actual Area (in)	Actual Area (mm)		
	Small				Soft Pressure	+1841	0.011	7.09676		
	Rigid	32.15	6.5	100.951	Hard Presure		0.056	36.12896		
	Small	40				125.6	Soft Pressure	•	0.021	13.54836
)	Smooth 4		6.5	120.0	Hard Pressure	•	0.069	44.51604		
	Large				Soft Pressure	uIIII.	0.03	19.3548		
	Rigid	60	7.75	188.4	Hard Pressure		0.109	70.32244		
	RC Buggy	62.26	29	195.4964	Soft Pressure		0.045	29.0322		
)	Wheels				Hard Pressure		0.178	114.8385		

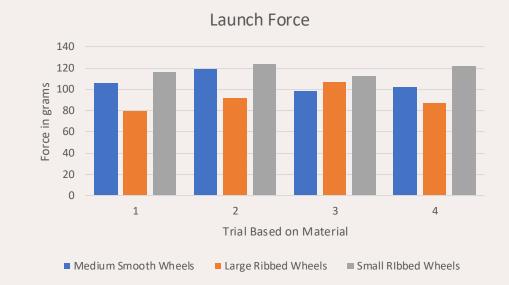
Wheel Selection – Surface Area Testing: Surface Area of the Circumferance


Both Large Ribbed Wheels and Medium Smooth Wheels had a smaller Percent Difference from the expected values vs. their experimental values

Based on the information presented within the tables, it seems as if Large Ribbed Wheels to be the most efficient choice but more test need to be run

	Surface Area of the Circumferance								
Units		mm				mm	in	mm	mm
Wheel Type	Diameter	Thickness	Length per Rotation (Wheel Circumfer nce)	lmage Format Title	ImageJ Processed Image	Expected Area (mm^2)	Actual Area (in)	in mm	Percent Difference
Small Rigid	22.15	6.5	100.051	Soft Pressure, 1Rotation	STATAGET EFTER SESSER FOR SHARE AND	656.1815	0.183	118.06428	82.01%
	ilgid 32.15 6.5 100.951	100.551	Hard Pressure, 1Rotation	<pre>(CFF ####EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE</pre>	656.1815	0.303	195.48348	70.21%	
Small	40	6.5	6.5 125.6	Soft Pressure, 1Rotation		816.4	0.509	328.38644	59.78%
Smooth				Hard Pressure, 1Rotation		816.4	0.881	568.38596	30.38%
				Soft Pressure, 1Rotation		1460.1	0.416	268.38656	81.62%
Large Rigid	60	7.75	188.4	Hard Pressure, 1Rotation	 Contract state and the state of the state of	1460.1	0.97	625.8052	57.14%
RC Buggy				Soft Pressure, 1Rotation		5669.3956	0.514	331.61224	94.15%
Wheels	62.26	29	195.4964	Hard Pressure, 1Rotation		5669.3956	1.012	652.90192	88.48%

Wheel Selection – Static Drag Friction Testing


			S	tatic Dra	ag frictio	n				
	Trial	Trial 1 - Formica		Trial 2 - N	Trial 2 - Melamine		Trial 3 - Paper		Trial 4 - Painted Wood	
Wheel Type	Number	Val	ues	Val	ues	Values		Values		
		lb	g	lb	g	lb	g	lb	g	
	1	0.32	145.15	0.26	117.93	0.36	163.29	0.16	72.57	
	2	0.32	145.15	0.28	127.01	0.36	163.29	0.14	63.50	
	3	0.3	136.08	0.28	127.01	0.34	154.22	0.14	63.50	
	4	0.32	145.15	0.24	108.86	0.34	154.22	0.12	54.43	
	5	0.3	136.08	0.24	108.86	0.32	145.15	0.14	63.50	
Large Ribbed	6	0.3	136.08	0.28	127.01	0.32	145.15	0.12	54.43	
Wheels	7	0.28	127.01	0.26	117.93	0.32	145.15	0.14	63.50	
	8	0.3	136.08	0.24	108.86	0.34	154.22	0.14	63.50	
	9	0.28	127.01	0.26	117.93	0.32	145.15	0.14	63.50	
	10	0.3	136.08	0.24	108.86	0.36	163.29	0.14	63.50	
	AVG	0.302	136.98	0.258	117.03	0.338	153.31	0.138	62.60	
	1	0.28	127.01	0.28	127.01	0.26	117.93	0.32	145.15	
	2	0.28	127.01	0.26	117.93	0.24	108.86	0.3	136.08	
	3	0.28	127.01	0.28	127.01	0.26	117.93	0.3	136.08	
	4	0.28	127.01	0.24	108.86	0.26	117.93	0.3	136.08	
	5	0.3	136.08	0.26	117.93	0.24	108.86	0.3	136.08	
Small Ribbed Wheels	6	0.28	127.01	0.28	127.01	0.24	108.86	0.3	136.08	
wheels	7	0.28	127.01	0.26	117.93	0.24	108.86	0.3	136.08	
	8	0.26	117.93	0.26	117.93	0.24	108.86	0.3	136.08	
	9	0.26	117.93	0.28	127.01	0.24	108.86	0.28	127.01	
	10	0.26	117.93	0.28	127.01	0.26	117.93	0.3	136.08	
	AVG	0.276	125.19	0.268	121.56	0.248	112.49	0.3	136.08	
	1	0.44	199.58	0.3	136.08	0.36	163.29	0.38	172.36	
	2	0.44	199.58	0.38	172.36	0.36	163.29	0.4	181.44	
	3	0.4	181.44	0.38	172.36	0.34	154.22	0.44	199.58	
	4	0.4	181.44	0.38	172.36	0.34	154.22	0.44	199.58	
	5	0.44	199.58	0.36	163.29	0.34	154.22	0.46	208.65	
Medium Smooth Wheels	6	0.44	199.58	0.38	172.36	0.34	154.22	0.4	181.44	
mooth wheels	7	0.44	199.58	0.36	163.29	0.34	154.22	0.46	208.65	
	8	0.46	208.65	0.38	172.36	0.32	145.15	0.44	199.58	
	9	0.4	181.44	0.38	172.36	0.32	145.15	0.4	181.44	
	10	0.44	199.58	0.4	181.44	0.32	145.15	0.44	199.58	
	AVG	0.43	195.04	0.37	167.83	0.338	153.31	0.426	193.23	

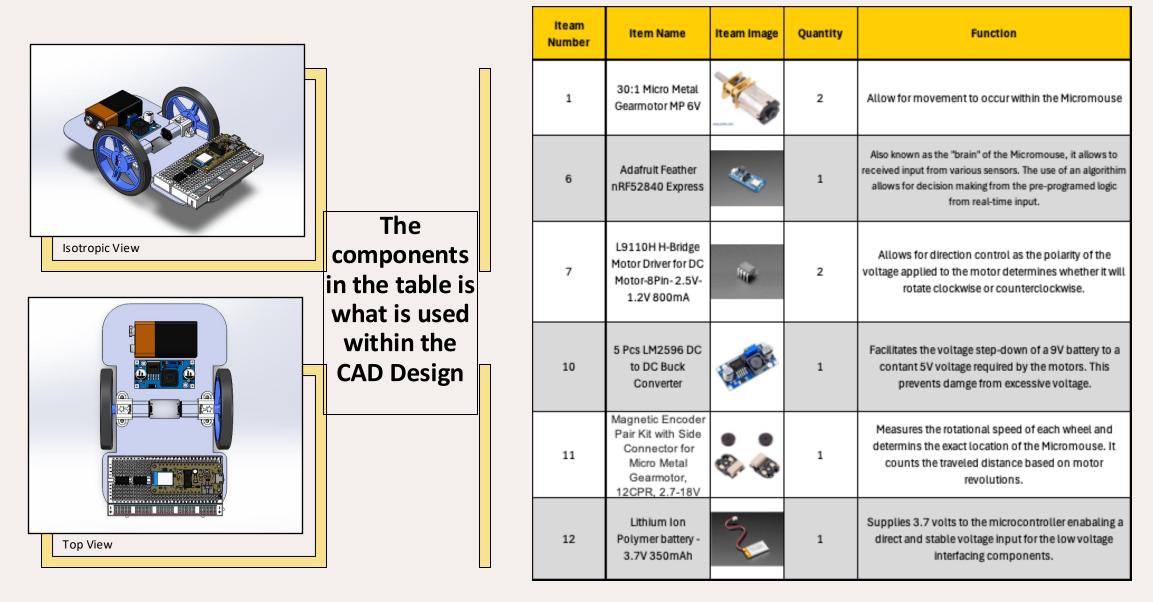
Based on this analysis, Large Ribbed Wheels had the greatest static drag friction, therefore a greater grip/ traction to all 4 surfaces

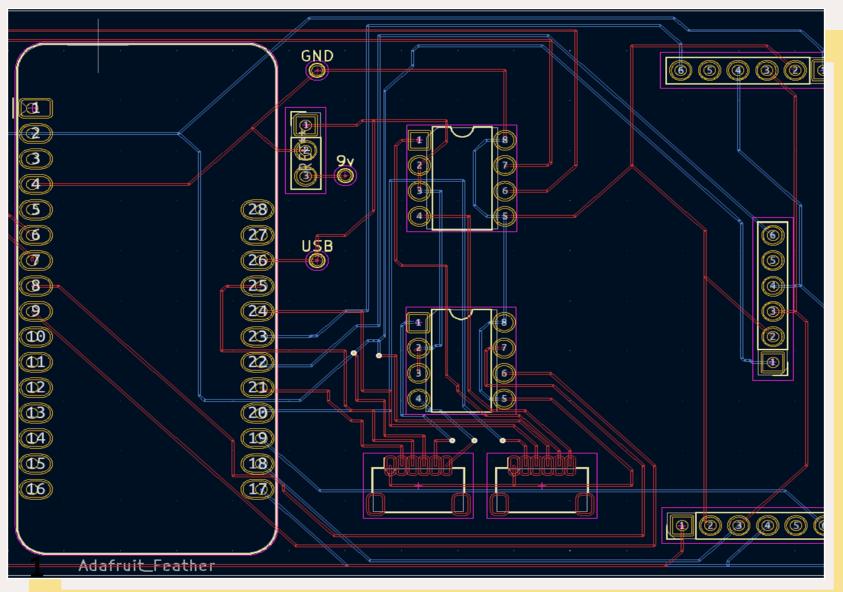
Wheel Selection – Launch Force Testing

	Launch Force Testing								
Wheel Type	Trial Number	Trial 1 - Tri Formica Mel		Trial 3 - Paper	Trial 4 - Painted Wood				
		Values	Values	Values	Values				
		g	g	g	g				
	1	105	110	90	100				
	2	115	125	95	100				
	3	115	130	100	105				
	4	95	115	95	100				
	5	105	125	105	105				
Medium Smooth Wheels	6	105	125	100	105				
wneers	7	100	110	110	105				
	8	105	120	90	100				
	9	105	125	105	105				
	10	105	110	95	100				
	AVG	105.5	119.5	98.5	102.5				
	1	80	100	110	95				
	2	80	90	110	95				
	3	70	100	100	90				
	4	75	90	110	90				
	5	80	90	105	90				
Large Ribbed	6	80	95	110	90				
Wheels	7	80	85	105	85				
	8	80	85	105	80				
	9	90	90	110	80				
	10	85	90	100	80				
	AVG	80	91.5	106.5	87.5				
	1	95	130	115	115				
	2	105	115	105	105				
	3	120	125	120	130				
	4	125	120	115	125				
	5	115	130	115	125				
Small Ribbed	6	125	120	115	125				
Wheels	7	120	135	105	110				
	8	115	115	105	130				
	9	120	125	110	130				
	10	120	125	125	120				
	AVG	116	124	113	121.5				

This testing allows for the quantification of the difference between wheel diameter and tire differences on acceleration. It is seen that the Small Ribbed Wheels have a higher Launch Force, but they were observed to slip. Although they have better performance, it would ultimately throw off the odometry, causing inaccuracies regarding the autonomy. This loss of traction places Medium Smooth Wheels and Large Ribbed Wheels as the next best options.

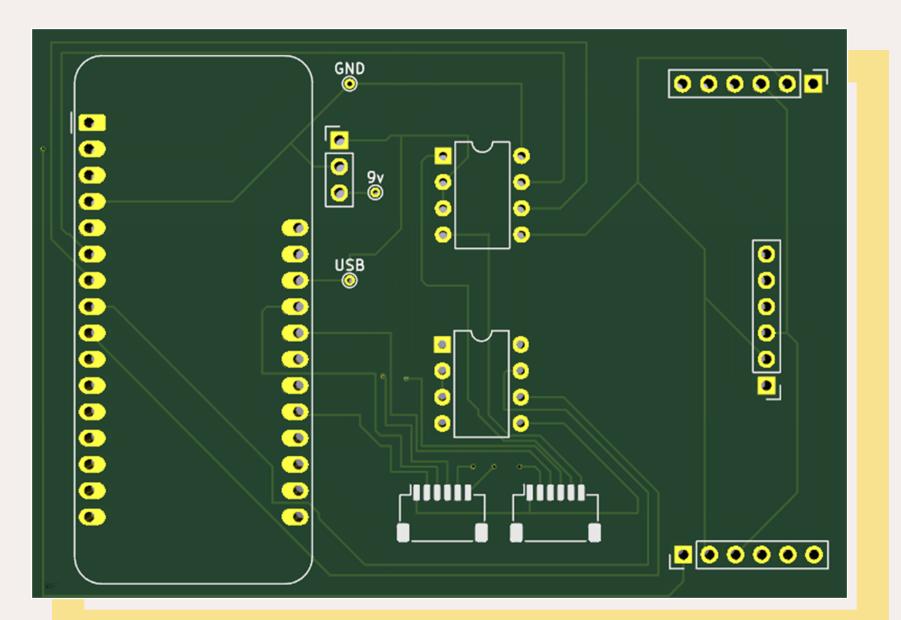
Wheel Selection – Slip Ratio


Slip Ratio (1 Revolution)								
Wheel Type	Diameter (mm)	Trial 1	Trial 2	Trial 3	Average			
Medium Smooth Wheels	40	0.83	0.76	0.84	0.81			
Large Ribbed Wheels	60	0.87	0.89	0.86	0.87			


The Slip Ratio was determined by measuring the distance the Micromouse traveled linearly with respect to one full tire revolution. The Large Ribbed Wheels showed the lowest slippage while accelerating in a short distance, simulating the length of 1 Unit Cell a Micromouse moving across the maze.

Design Components – Final CAD Design

Final Prototype Model – Drivetrain Components Only [Chassis and Components Package]

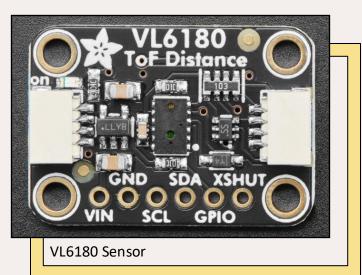

Drivetrain Circuit Schematic

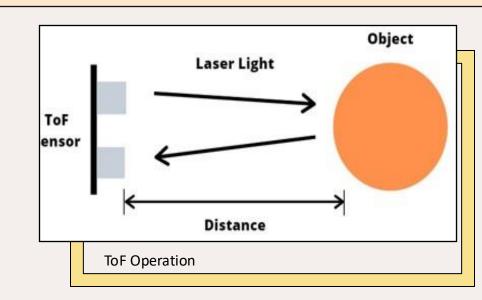
TOF Sensor Port 3

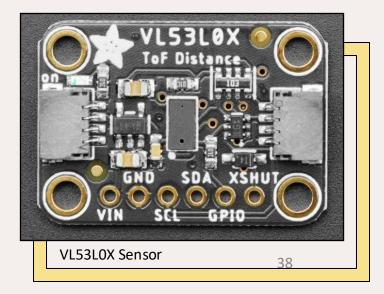
Drivetrain PCB

Sensor Case Study – Mapping Team

Approach

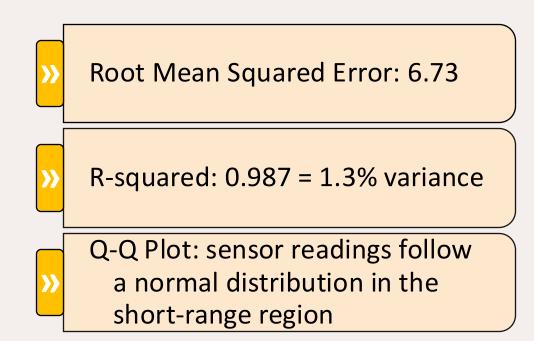

• For this project, the mapping team has researched multiple sensors such as infrared sensors, ultrasonic sensors and time of flight sensors. After thoroughly doing research on the pros and cons of these sensors, three sensors have been chosen for the concept design of this project.


Criteria	Infrared Sensors	Ultrasonic Sensors	Time of Flight Sensors
Low Cost	Good	Good	Good
Efficiency	Very Good	Good	Good
Distance	Very Good	Good	Very Good
Size and Weight	Good	Very Good	Very Good
Voltage Power	Good	Very Good	Good

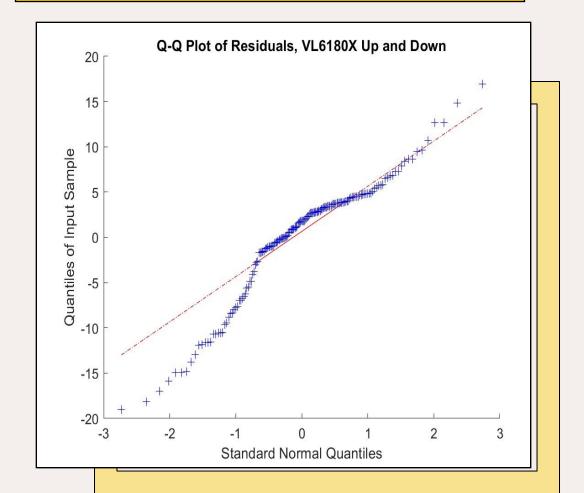

Sensor Research: Time of Flight Sensors – Mapping Team

Approach

- Two Time-of-Flight (ToF) Sensors: VL6180X and VL53L0X
 - VL6180X: Proximity Sensor, Ambient Light Sensor, and Vertical Cavity-Emitting Laser (VCSEL) light source
- VL53L0X: VCSEL light source with infrared filters
 - Operate: detects time taken for light to bounce back from a surface


Linear regression model:

y ~ 1 + x1


Estimated Coefficients:

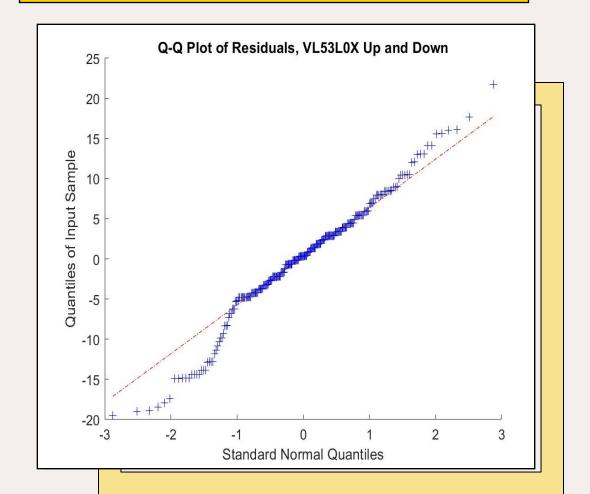
	Estimate	SE	tStat	pValue
				0
(Intercept)	-9.8956	1.0992	-9.0025	6.692e-16
x1	1.0534	0.009636	109.32	8.6386e-151

Number of observations: 160, Error degrees of freedom: 158
Root Mean Squared Error: 6.73
R-squared: 0.987, Adjusted R-Squared: 0.987
F-statistic vs. constant model: 1.19e+04, p-value = 8.64e-151

VL6180X Sensor

Linear regression model:

y ~ 1 + x1

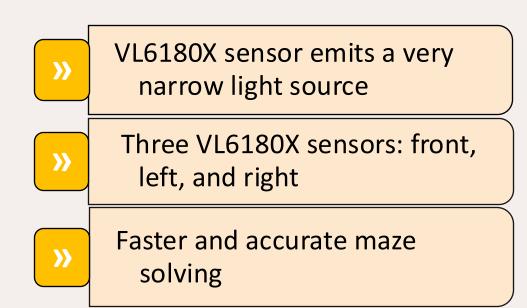

Estimated Coefficients:

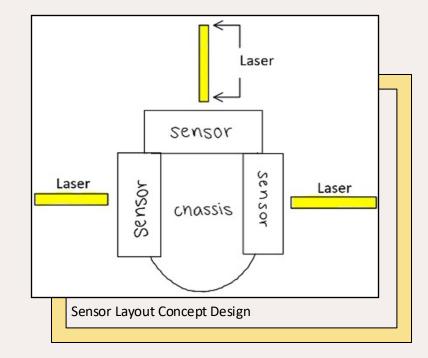
	Estimate	SE	tStat	pValue
(Intercept)	-5.4848	0.92462	-5.932	1.0006e-08
x1	1.0164	0.0051529	197.25	1.2978e-274
Number of observa	tions: 250,	Error degrees	of freedom:	248

Root Mean Squared Error: 7.32 R-squared: 0.994, Adjusted R-Squared: 0.994 F-statistic vs. constant model: 3.89e+04, p-value = 1.3e-274

Root Mean Squared Error: 7.32
 R-squared: 0.994 = 0.6% variance
 Q-Q Plot: residuals follow a normal distribution in the mid-range region

VL53L0X Sensor

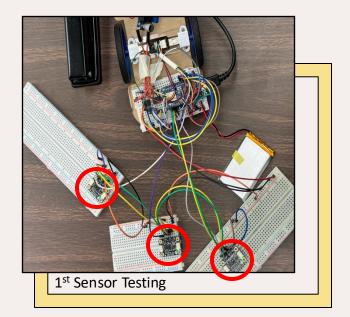

Time of Flight Sensors – Mapping Team

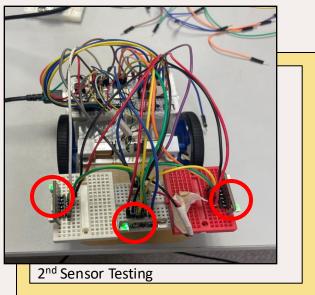

Criteria	VL6180X	VL53L0X
Voltage	2.6-3.0V	2.6-3.5V
Detectable Distance	10-190mm	19-2000mm
Connection	4 pin	4 pin
Pros	Fast accurate distance	Longer detectable distance
Cons	Cannot detect past 100 mm	Readings depend on light absorbed
Price	\$13.95	\$14.95

VL53L0X detects longer range, VL6180X detects shorter range
 The VL6180X can provide precise, close-range measurements, which is useful for detecting obstacles or walls at a short distance
 Paired with the Sharp IR sensor, the VL6180X will be the best suited for detecting short distance
 Conclusion: When a Sharp IR sensor detects a far-away obstacle, the VL6180X can be used to detect the immediate proximity data, providing a more accurate reading in close spaces

Sensor Testing: Time of Flight Sensors – Mapping Team

Approach

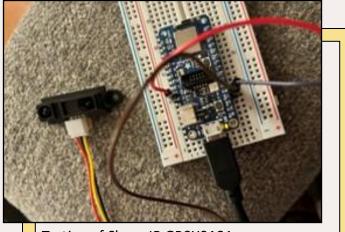

Sensor Software: Time of Flight Sensors VL6180X

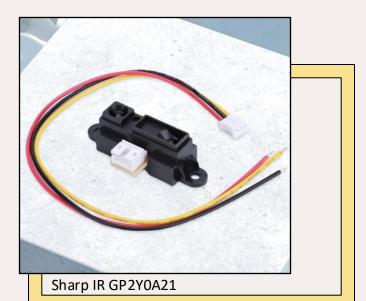

1st Testing Arduino Code

- Three ToF VL6180X sensors are initialized and have their unique addresses to be able to carry out tasks
- Each sensor has its designated XSHUT pin connected to the microcontroller and is outputting its own range onto the Serial Monitor on Arduino

2nd Testing Arduino Code

- Now that we know each sensor is detecting range separately and simultaneously, we need it to be able to detect openings
- Sensors now have a threshold of 30mm, if the sensors detect any range over 30mm then it is an "opening" the Micromouse can then go through

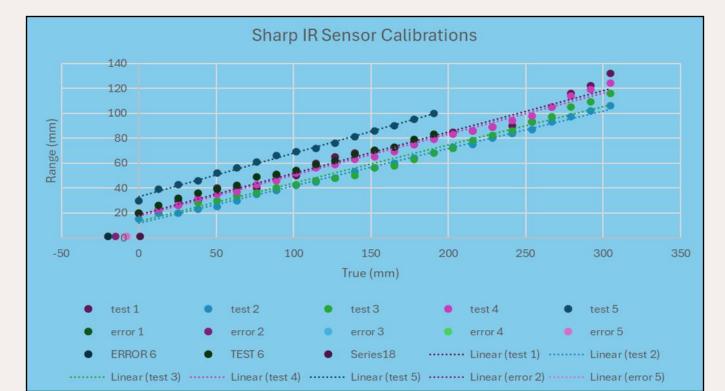



Sensor Research: Sharp IR GP2Y0A21 – Mapping Team

Approach


• The infrared sensor researched is the Sharp IR GP2Y0A21 Distance Sensor works by converting light to electricity or vice versa. This sensor has two lenses which works by emitting a beam of light through one lens and once there is an object detected the beam of light reflects off the object and lands onto the second lens. The pins used to run tests would be GND, USB for 5V and A0.

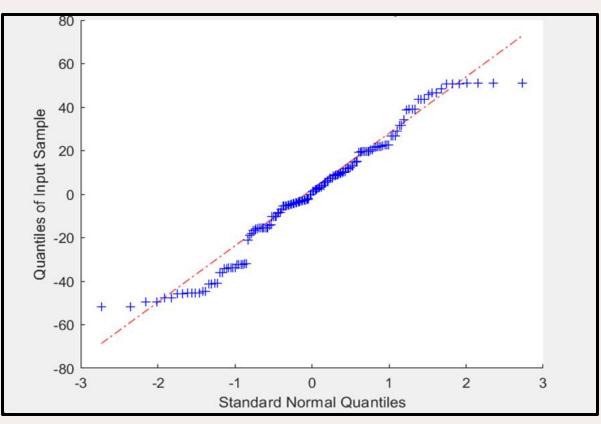
Testing of Sharp IR GP2Y0A21



Sensor Testing: Sharp IR GP2Y0A21 – Mapping Team

Approach

• Within this chart is my sensor calibration curve of the SHARP IR Sensor starting from 0 mm to 132 mm. We ran our code about 5 times to see how each curve would appear. Test 1 through 4 are from the direction of the sensor moving forward and test 5 and 6 are from the direction of the sensor moving backward. The reason for us to do this is to determine the best sensor moving forward on the chassis. The code used is also on this slide.



Sensor Testing: Sharp IR GP2Y0A21 – Mapping Team

	Estimate	SE	tStat	pValue
(Intercept)	-31.067	8.4849	-3.6615	0.0004546
x1	2.5499	0.15869	16.068	1.8404e-26
		_		e-26
near regressio y ~ 1 + x1	on model:			
near regressio y ~ 1 + x1 timated Coeffi		_		
y ~ 1 + x1		SE	tStat	pValue
y ~ 1 + x1	cients:	SE	tStat	
y ~ 1 + x1 timated Coeffi	cients:			pValue

Approach

 Now that I have found the linear regression of my sensor, I was able to make a Q-Q plot to show whether the data set is normally distributed. Doing these tests help us determine which sensors are best for shorter and longer distances.

Electronic Sensor Components

Sensor Testing: Sharp IR GP2Y0A21 – Wall Following Method

Approach

• Within the Sharp IR GP2Y0A21, we have written a code for a wall following method to help our mouse detect when there is a wall too close to our sensors and telling our motors to turn left or continue forward.

<pre>#include <adafruit_tinyusb.h> #include <sharpir.h> const int irSensorPin = A0; // IR sensor connected to analog pin A0 const int motorLeftForward = 3; // Motor A forward const int motorLeftBackward = 4; // Motor A backward const int motorRightForward = 5; // Motor B forward const int motorRightBackward = 6; // Motor B backward // Array to store sensor readings const int maxReadings = 10; // Number of readings to store int sensorValues[maxReadings]; // Array to store sensor readings int currentIndex = 0; // Index to keep track of current position</sharpir.h></adafruit_tinyusb.h></pre>	<pre>void loop() { // Read the value from the IR sensor sensorValue = analogRead(irSensorPin); // Store the current sensor value in the array storeSensorData(sensorValue); // Print the stored sensor data every time the array is filled if (currentIndex == maxReadings) { printSensorData(); currentIndex = 0; // Reset index after printing } </pre>	<pre>currentIndex++; if (currentIndex >= maxReadings) { currentIndex = 0; // Reset to 0 after storing max readings } } // Function to print all stored sensor data to the serial monitor void printSensorData() { Serial.println("Stored Sensor Readings:"); for (int i = 0; i < maxReadings; i++) { Serial.print("Reading "); Serial.print(i); Serial.print(i); Serial.print(": "); Consider print(": ");</pre>
<pre>// Thresholds for wall following const int targetDistance = 200; // Target distance from wall in sensor val const int tolerance = 50; // Tolerance to avoid oscillation in dista // Variables for sensor value int sensorValue = 0; void setup() { // Set motor pins as outputs pinMode(motorLeftForward, OUTPUT); pinMode(motorLeftBackward, OUTPUT); pinMode(motorRightForward, OUTPUT); pinMode(motorRightBackward, OUTPUT); pinMode(motorRightBackward, OUTPUT); pinMode(motorRightBackward, OUTPUT); // Start serial communication for debugging Serial.begin(9600); Serial.println("Wall following with data storage started"); } </pre>	<pre>// Wall Following Logic if (sensorValue < targetDistance - tolerance) { // Too far from the wall moveForward(); } else if (sensorValue > targetDistance + tolerance) { // Too close to the wall turnLeft(); } else { // Ideal distance from the wall moveForward(); } delay(100); // Small delay for smooth operation } // Function to store sensor data in the array void storeSensorData(int value) { // Store the sensor value in the array at the current index sensorValues[currentIndex] = value;</pre>	<pre>Serial.println(sensorValues[i]); } Serial.println(); // Add a blank line after the readings } // Function to move the robot forward void moveForward() { digitalWrite(motorLeftForward, HIGH); digitalWrite(motorLeftBackward, LOW); digitalWrite(motorRightBackward, LOW); } // Function to turn the robot left void turnLeft() { digitalWrite(motorLeftForward, LOW); digitalWrite(motorLeftForward, LOW); digitalWrite(motorLeftForward, LOW); digitalWrite(motorLeftForward, LOW); digitalWrite(motorLeftForward, LOW); digitalWrite(motorRightForward, LOW); digitalWrite(motorRightForward, LOW); }</pre>

Electronic Sensor Components

Sensor Testing: Sharp IR GP2Y0A21 – Visited Path Memorizing

Approach

• Within the Sharp IR GP2Y0A21, we have written a code for a visited path memorizing method to help our mouse detect when we have already visited a specific space as well as knowing not to retrace the steps we have already taken.

#include <Adafruit_TinyUSB.h> #include <SharpIR.h>

#define UP 0 #define RIGHT 1 #define DOWN 2 #define LEFT 3

// Define grid size (e.g., 10x10 maze)
#define GRID_WIDTH 12
#define GRID HEIGHT 12

// Create a 2D array to track visited cells
int visited[GRID_WIDTH][GRID_HEIGHT];

// Sensor pins for the Sharp IR sensor (front detection)
int irPinFront = A0; // Adjust this to your actual IR sensor

// Motor control pins (adjust based on your hardware setup)
int motorLeftPin = 14;
int motorRightPin = 17;

// Current position of the robot
int currentX = 0;
int currentY = 0;

// Direction the robot is facing (0 = up, 1 = right, 2 = down, int facingDirection = UP;

#define DIST_THRESHOLD 15 // cm

// Initialize sensors and motors
void setup() {
 // Set IR sensor pin as input
 pinMode(irPinFront, INPUT);

// Set motor pins as output
pinMode(motorLeftPin, OUTPUT);
pinMode(motorRightPin, OUTPUT);

// Initialize visited grid to 0 (unvisited)
memset(visited, 0, sizeof(visited));

// Mark the starting position as visited
visited[currentX][currentY] = 1;

// Start moving
moveForward();

void loop() {

// Read the Sharp IR sensor to detect the distance to the wall int distance = analogRead(irPinFront); // Analog value from S

// Convert the sensor reading to a distance in cm (you may nee distance = map(distance, 0, 1023, 0, 100); // Simplified mappi

// If no obstacle in front (sensor reading below threshold)
if (distance > DIST_THRESHOLD) {
 moveForward();
} else {
 // Obstacle detected, follow the wall on the left (can be a

if (canTurnLeft() && !isVisited(currentX, currentY, (facingDirection - 1 + 4) % 4)) { turnLeft(); moveForward(); } else if (canMoveForward() && !isVisited(currentX, currentY, facingDirection)) { moveForward(); } else { backtrack(); Move forward by one step id moveForward() { // Update current position based on facing direction if (facingDirection == UP) { currentY--; else if (facingDirection == RIGHT) { currentX++; else if (facingDirection == DOWN) { currentY++: } else if (facingDirection == LEFT) { currentX--:

// Mark the new position as visited
visited[currentX][currentY] = 1;

// Move motors forward (this is just a placeholder)
digitalWrite(motorLeftPin, HIGH);
digitalWrite(motorRightPin, HIGH);
delay(500); // Adjust delay for actual movement speed
digitalWrite(motorLeftPin, LOW);

Electronic Sensor Components

Sensor Testing: Sharp IR GP2Y0A21 – Visited Path Memorizing, Continued Code....

digitalWrite(motorRightPin, LOW);

```
// Check if the robot can turn left (there's no obstacle)
pool canTurnLeft() {
    int newDirection = (facingDirection - 1 + 4) % 4;
```

return !isObstacleInDirection(newDirection);

// Check if the robot can move forward (there's no obstacle)
bool canMoveForward() {
 return !isObstacleInDirection(facingDirection);

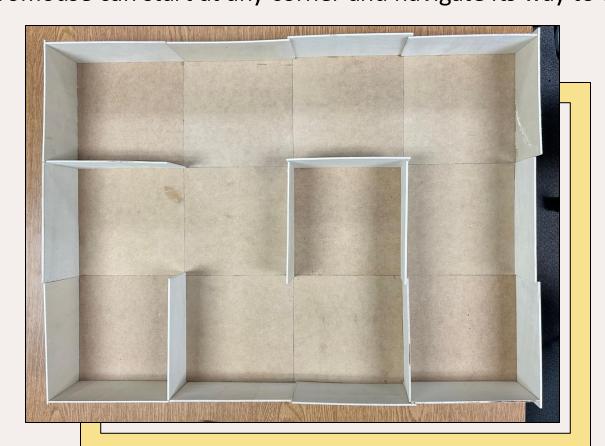
```
// Check if the robot has already visited a position in a giv
bool isVisited(int x, int y, int direction) {
    // You need to check if the next position in the given directif
    if (direction == UP) {
       return visited[x][y - 1] == 1;
    } else if (direction == RIGHT) {
       return visited[x + 1][y] == 1;
    } else if (direction == DOWN) {
       return visited[x][y + 1] == 1;
    } else if (direction == LEFT) {
       return visited[x - 1][y] == 1;
    }
}
```

return false;

// Helper function to check if there is an obstacle in the gisool isObstacleInDirection(int direction) {
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given direction using
 // Logic to check for obstacles in the given di

if (direction == UP) {
 return analogRead(irPinFront) < DIST_THRESHOLD; // Front s
 else if (direction == RIGHT) {
 return false; // Assume no sensor on the right side (can a
 else if (direction == DOWN) {
 return analogRead(irPinFront) < DIST_THRESHOLD; // Same se
 else if (direction == LEFT) {
 return false; // Assume no sensor on the left side (can ad
 }
 return false;</pre>

```
/ Turn the robot 90 degrees to the left
pid turnLeft() {
  facingDirection = (facingDirection - 1 + 4) % 4;
  // Motor control code to turn left (this is just a placeholded)
```


```
/ Turn the robot 90 degrees to the right
pid turnRight() {
facingDirection = (facingDirection + 1) % 4;
// Motor control code to turn right (this is just a placehold
```

/ Backtrack if the robot is stuck
roid backtrack() {
 // Simple backtracking: turn 180 degrees and move back to the
 turnLeft();
 turnLeft();
 moveForward();

Small Scale Testing Maze Design

Mapping Team

• As a team, we have constructed a 3x4 maze using the proper measurement requirements of 8x8in a square. We have exactly 12 square units. We have created the maze to test the *Micromouse*, when it undergoes different types of scenarios. The *Micromouse* can start at any corner and navigate its way to the middle.

References

•*IEEE.* "Micromouse Contest Rules." *IEEE Region 2 Student Activities Committee*, 2018, <u>https://ewh.ieee.org/reg/2/sac-18/MicromouseRules.pdf</u>.

- •Zhen, Gan et al. "Autonomous Maze Solving Robot." (2011).
- •Finan, P. "Mleng in Electronics and Electrical Engineering." Loughborough University, May 2000.
- •Jianping Cai; Zengwei Zheng; Minyi Guo. Inderscience Publishers. "A calibration algorithm for maze micromouse continuous smooth turning
- •"Difference Between AC & DC Motor." Electrical Technology, <u>www.electricaltechnology.org/2020/06/difference-between-ac-dc-motor.html</u>.
- •Hermitage Automation, "Difference Between AC and DC Motor", <u>https://hermitageautomation.com/difference-between-ac-and-dc-motor/</u>

•Pololu, "Pololu – Item #: 2364", https://www.pololu.com/product/2364